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Announcements

HW 2 released, due Tuesday 9/30
• In person guest lecture Wednesday 9/24
• Virtual guest lecture Monday 9/29



HW1 Final estimates



Summary of recommendations

There are 3 steps to building a recommendation system:
• Choose the data that you will use

What does the data imply about people’s opinions and future desires?

• Train a model to predict ratings between pairs of items and users
Different approaches (item- and user similarity, matrix factorization)
Can also combine approaches

• Recommend items based on predictions and other concerns
Capacity constraints, diversity, fairness considerations, long-term objectives



Questions from 
recommendations?



Algorithmic Pricing



Module Overview

• Basics of pricing and algorithmic pricing
• Pricing under uncertainty or heterogeneous valuations in population
• Demand estimation at different prices

• Challenges from practice:
Capacity constraints, dynamics, competition, selling multiple items 
(cannibalization)

• Extended case-study: Pricing in online marketplaces [Ride-hailing]
• Ethics, Transparency, and Bias in algorithmic pricing



User model and omniscient 
pricing



Simple user behavior model

• Suppose you’re selling 1 type of item
• Each person 𝑖𝑖 has a private valuation 𝑣𝑣𝑖𝑖 for that item
• Suppose you offer the item at price 𝑝𝑝
• Person 𝑖𝑖 buys the item if 𝑣𝑣𝑖𝑖 ≥ 𝑝𝑝
• Omniscient pricing: maximize revenue by setting 𝑝𝑝𝑖𝑖 = 𝑣𝑣𝑖𝑖

𝑣𝑣1 = 10 𝑣𝑣2 = 6 I’ll sell you a copy 
for price 𝑝𝑝 = 8

Yes No



Maximizing profit via machine learning

• Omniscient pricing: maximize revenue by setting 𝑝𝑝𝑖𝑖 = 𝑣𝑣𝑖𝑖
• Challenge: we don’t know valuation 𝑣𝑣𝑖𝑖 for each person
• Ok, let’s just use a machine learning approach!

• Create an estimate �𝑣𝑣𝑖𝑖 for value for person 𝑖𝑖 using historical data
• KNN, regression, whatever

• Set price 𝑝𝑝𝑖𝑖 = �𝑣𝑣𝑖𝑖
• Problem: the above approach miserably fails!



Why does the naïve method fail?

• Your estimated valuation �𝑣𝑣𝑖𝑖 is not perfect
• Example: Suppose the true valuation 𝑣𝑣𝑖𝑖 = 10

• What is your revenue if �𝑣𝑣𝑖𝑖 = 𝑝𝑝 = 9?  
Answer: 9

• What is your revenue if �𝑣𝑣𝑖𝑖 = 𝑝𝑝 = 11?  
Answer: 0

• Under the simple behavior model, small errors in guessing valuation 
�𝑣𝑣𝑖𝑖 can have huge revenue implications

• Must incorporate uncertainty in your pricing decisions! 

(You also don’t have great data to estimate �𝑣𝑣𝑖𝑖…)



Optimal pricing with uncertainty
“Posted price mechanisms” and personalized pricing



Challenge

• There is a lot of randomness in whether someone purchases at a 
given price. Multiple ways to think about it:

• You have a single price 𝑝𝑝 for the entire population, but people differ in in their 
valuations 𝑣𝑣𝑖𝑖 (heterogeneity)

• You do personalized pricing 𝑝𝑝𝑖𝑖, but your estimate �𝑣𝑣𝑖𝑖 is not perfect (noise)

• Why is this a problem? 
• In recommendations, we ignored noise. Why not ignore it here?
• Here, dealing with noise is crucial if we want to maximize revenue, even “in 

expectation”



Model
• Here, let’s suppose we are posting single price 𝑝𝑝 for entire 

population
• We have unlimited copies of the item
• Suppose we have a distribution 𝐹𝐹 for the users’ valuations: 

for each user 𝑖𝑖, valuation 𝑣𝑣𝑖𝑖 ~ 𝐹𝐹
• If we set price 𝑝𝑝:

• Each individual with valuation 𝑣𝑣𝑖𝑖 ≥ 𝑝𝑝 purchases
• Overall, fraction 1 −  𝐹𝐹 𝑝𝑝  purchases

d p =  1 −  𝐹𝐹 𝑝𝑝  is called 
the “demand” at price 𝑝𝑝



Maximizing revenue 
• Expected revenue at price 𝑝𝑝: 

[Revenue from each sale] x [Demand at price 𝑝𝑝] 
𝑝𝑝 𝑑𝑑(𝑝𝑝)

• Revenue maximizing price:
argmax𝑝𝑝 𝑝𝑝 𝑑𝑑(𝑝𝑝)



Personalized pricing: Price differentiation via 
covariates
• So far: given the population valuation distribution 𝐹𝐹, we can find the 

price 𝑝𝑝 that maximizes revenue: argmax𝑝𝑝 𝑝𝑝 1 −  𝐹𝐹 𝑝𝑝
• Now, suppose we have covariates 𝑥𝑥𝑖𝑖 for each potential customer, and 

we are allowed to give show different prices to different people
• Prices by geography (neighborhood)
• Student or senior citizen discounts

• Now, given the conditional distributions 𝐹𝐹𝑝𝑝|𝑋𝑋 𝑝𝑝 𝑋𝑋 = 𝑥𝑥), simply 
create a price 𝑝𝑝(𝑥𝑥) that maximizes revenue 

𝑝𝑝 𝑥𝑥 × (1 −  𝐹𝐹𝑝𝑝|𝑋𝑋 𝑝𝑝 𝑋𝑋 = 𝑥𝑥))



Example

• Suppose we have a binary covariate, 
𝑥𝑥𝑖𝑖 ∈ 0, 1 . Population evenly split

• Valuation distributions differ
• And then purchase probabilities at 

each price 𝑝𝑝 also differ

𝐹𝐹𝑝𝑝|𝑋𝑋 𝑝𝑝 𝑋𝑋 = 0) 𝐹𝐹𝑝𝑝|𝑋𝑋 𝑝𝑝 𝑋𝑋 = 1)



Example cont.

• If we don’t have any capacity constraints 
on the item, we can simply find optimal 
prices independently for the two customer 
types

• Value of personalized pricing
• Revenue from single price: 3.81
• Revenue from separate prices: 4.72

• Things get more complicated if there are 
capacity constraints (next time)



Questions?
PollEv.com​/nikhilgarg713

https://pollev.com/nikhilgarg713


Demand (distribution) estimation



The challenge

• So far, we’ve talked about calculating 
optimal prices if we knew the demand 
distribution 𝐹𝐹 𝑝𝑝 , or the conditional 
demand distributions 𝐹𝐹𝑝𝑝|𝑋𝑋 𝑝𝑝 𝑋𝑋 = 𝑥𝑥)

• We don’t know these distributions! 
Need to learn them from data

• What does data look like? We never 
see valuations, just purchase decisions 
at historical prices 𝑝𝑝

• Assumption: we see decisions at many 
prices 𝑝𝑝



Naïve approach: Empirical Distribution

• Goal: estimate d p = 1 − 𝐹𝐹 𝑝𝑝  for each 𝑝𝑝 in a “reasonable 
range” of prices

• Naïve approach:
• Bin the historical prices offered
• In each bin, construct estimate �d p  as the fraction of offers in that bin 

that were accepted
�d p = # offers accepted

# offers
 

• When estimating 𝐹𝐹𝑝𝑝|𝑋𝑋 𝑝𝑝 𝑋𝑋 = 𝑥𝑥), simply do the same thing but 
for each set of covariates     



Naïve method pros and cons

Pros:
• Simple to implement
• “Non-parametric” – no assumptions 
• As # of historical samples → ∞, converge to truth

Cons:
• Wastes data: only use data for that given price 

bin and for that given covariate
• Requires many samples

Exactly the same as naïve mean estimation in polling!



Fancier methods: machine learning

• We want to estimate d p, x ≝ 1 − 𝐹𝐹𝑝𝑝|𝑋𝑋 𝑝𝑝 𝑋𝑋 = 𝑥𝑥)
• In polling module: we replaced mean estimation with “MRP.” More 

generally, plug in a machine learning model
• Now, can borrow information across prices and covariates
• We must make a “parametric” assumption for how prices and covariates 

relate to purchasing decisions

• One example: Logistic regression
• Target (Y variable) is purchase decision
• Covariates are: price offered, user covariates, interactions between price and 

covariates or between covariates



Using embeddings
• We want to estimate d p, x ≝ 1 − 𝐹𝐹𝑝𝑝|𝑋𝑋 𝑝𝑝 𝑋𝑋 = 𝑥𝑥)
• Previous slide: Logistic regression

• Target (Y variable) is purchase decision d p, x
• Covariates p, x  are: price offered, user covariates, interactions between price and 

covariates or between covariates
• Challenge: what if you have many items you’re selling (separately)? This 

wastes information (can’t use models across items)
• Alternative: Use idea from recommendations! Suppose you have user 

vector ui and item vector wj. Then, ML model to learn with covariates: 
p,𝑢𝑢𝑖𝑖 ⋅ 𝑤𝑤𝑗𝑗
• Can learn demand for items you haven’t sold before at certain prices!
• (Or completely new items, using KNN approach from recommendations)
• Allows incorporating other information you have about items, that helped you learn 

the item vectors



Demand estimation comments

• Demand estimation and forecasting is probably the most important 
and difficult challenge in revenue management

• Unlike most machine learning challenges, we need to estimate a 
function 𝐹𝐹 𝑝𝑝  [or treat price as a covariate]

• We made a substantial assumption that almost never holds in 
practice: that you have historical data at many different prices 𝑝𝑝

Requires experimentation!



Today’s summary, & complicating factors

Today: We want to sell an item
• Only one item
• No capacity constraints
• No competition from other sellers
• No over-time dynamics
• Allowed to explicitly give different prices to different users

Then: revenue-maximizing price(s) and demand estimation
Next time: Relax (some of) these limiting assumptions



Questions?
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